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Background: Text-Driven Style Transfer is Transforming

Image Synthesis

@ Text-driven style transfer is a critical task in image synthesis, blending the
style of a reference image with content described by a text prompt.

@ This field has significant applications in digital art, advertising, and game
design, enabling creative workflows.

@ Recent advancements in text-to-image generative models, such as Stable

Diffusion, have improved style transformations while preserving content
fidelity.

M. Lei et al. (Westlake Univ. et al.) StyleStudio: Text-Driven Style Transfer




The Problem: Challenges in Text-Driven Style Transfer

@ Defining “style” is inherently ambiguous, encompassing elements like color
palettes, textures, lighting, and brush strokes.

@ Existing models often overfit to reference styles, reducing flexibility and
adaptability.

@ Maintaining alignment with textual prompts and avoiding artifacts like layout
instability remain unresolved issues.
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Our Core Contributions

@ Proposed a cross-modal Adaptive Instance Normalization (AdalN)
mechanism to integrate style and text features, improving alignment.

@ Developed Style-based Classifier-Free Guidance (SCFG) to selectively control
stylistic elements, filtering out irrelevant influences.

@ Incorporated a Teacher Model to stabilize spatial layouts during early
generation stages, mitigating artifacts.

@ Demonstrated significant improvements in style transfer quality and text
alignment, compatible with existing frameworks without fine-tuning.
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Methodology: Overview of Our Approach

@ Our method introduces three key components to address the challenges in
text-driven style transfer:

o Cross-Modal Adaptive Instance Normalization (AdalN): Ensures balanced
fusion of style and text features.

@ Teacher Model: Stabilizes spatial layouts during early generation stages.

@ Style-Based Classifier-Free Guidance (SCFG): Enables selective control over
stylistic elements.
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Figure: Overfitting in text-to-image models: style dominates text prompts.
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Cross-Modal Adaptive Instance Normalization (AdalN)

@ Normalizes text features based on style features, ensuring balanced fusion
and minimizing conflicts between text and style inputs.

@ Replaces the traditional weighted sum approach, enabling effective feature
integration without additional training.

@ Improves alignment between textual prompts and reference styles, reducing
generation conflicts.
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Teacher Model for Layout Stabilization

@ Shares spatial attention maps during early denoising steps to stabilize layout
structures.

o Mitigates artifacts such as checkerboard patterns by selectively replacing
self-attention maps in the stylized image with those from the original
diffusion model.

@ Ensures consistent layout arrangements, improving the overall quality of
generated images.
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Figure: Cross-Modal AdalN with Teacher Model and Style-Based CFG.
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Style-Based Classifier-Free Guidance (SCFG)

@ Inspired by classifier-free guidance, SCFG uses a negative style image to
disentangle and emphasize desired style elements.

o Filters out irrelevant or conflicting features, ensuring precise control over
stylistic components in complex scenarios.

@ Improves the ability to selectively apply style elements, avoiding unintended
influences.

Figure: Checkerboard artifact in CSGO method vs. SDXL results with same noise.
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Experimental Setup

o Datasets: Evaluated on diverse datasets to test style transfer quality and text
alignment.

@ Metrics: Used text alignment accuracy, style fidelity, and user preference as
evaluation metrics.

@ Baselines: Compared against state-of-the-art methods, including IP-Adapter,
InstantStyle, and StyleAlign.
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Key Results: Quantitative Comparison

@ Our method achieves the highest text alignment accuracy, outperforming
state-of-the-art methods.

@ Improves text alignment by 8.7

@ Demonstrates significant improvements in style fidelity and user preference.

Table: Table 1: Quantitative comparison with state-of-the-art methods

Metric | SDXL-based Methods | SD15-based Methods | Ours

‘ IP-Adapter ‘ InstantStyle ‘ CSGO ‘ StyleAlign ‘ StyleCrafter ‘ StyleShot ‘ DEADiff ‘ Ours
Text Alignment 1 0.221 0.229 0.216 0.180 0.189 0.202 0.229 | 0.235
Infer Time (s) 6 6 9 48 4 3 2 17
User-study Text (%) 7.48 6.46 7.99 5.78 3.06 2.55 1.87 62.92
User-study Style (%) 6.63 8.67 6.97 7.82 8.67 5.10 5.27 50.85
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Ablation Study: Impact of Key Components

o Cross-Modal AdalN improves text alignment accuracy by 5.5%.
@ Teacher Model contributes a 3.2% improvement in text alignment.

@ Combining both components achieves an 8.7% improvement, demonstrating
their complementary effects.

Table: Table 2: Ablation study evaluating the impact of our proposed methods

Cross-Modal AdalN ‘ Teacher Model ‘ Text Alignment T ‘

0.216
v 0.223 (+3.2%)
v 0.228 (+5.5%)
v v 0.235 (+8.7%)
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Conclusion and Future Work

@ Our method addresses critical limitations in text-driven style transfer,
improving alignment, control, and stability.

@ Demonstrated significant improvements in style fidelity and text alignment,
compatible with existing frameworks.

@ Future work includes improving efficiency and exploring strategies to further
mitigate style overfitting.
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Questions & Discussion

@ Thank you for your attention!

@ Questions and feedback are welcome.
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